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Abstract

Random links between otherwise distant nodes can greatly facilitate the propagation of disease or information, provided

contagion can be transmitted by a single active node. However, we show that when the propagation requires simultaneous

exposure to multiple sources of activation, called complex propagation, the effect of random links can be just the opposite;

it can make the propagation more difficult to achieve. We numerically calculate critical points for a threshold model using

several classes of complex networks, including an empirical social network. We also provide an estimation of the critical

values in terms of vulnerable nodes.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently much attention has been paid to complex networks as the skeleton of complex systems [1–5]. For
example, recent advances in complex systems have shown that most real networks display the small-world
property: they are as clustered as a regular lattice but with an average path length similar to a random network
[1]. More precisely, it has been shown that surprisingly few bridge links are needed to give even highly
clustered networks the ‘‘degrees of separation’’ characteristic of a ‘‘small world’’. Interestingly, these random
links significantly facilitate propagation of contagions such as disease and information [1,6,7]. For simple

propagation—such as the spread of information or disease—in which a single active node is sufficient to trigger
the activation of its neighbors, random links connecting otherwise distant nodes achieve dramatic gains in
propagation rates by creating ‘‘shortcuts’’ across the graph [8,9]. Sociologists have long argued that bridge
links between disjoint neighborhoods promote the diffusion of information and disease, a regularity known as
the ‘‘strength of weak links’’ [8].

Not all propagation is simple. The social world is also rife with examples of complex propagation, in which
node activation requires simultaneous exposure to multiple active neighbors. Fads, stock market herds, lynch
mobs, riots, grass root movements, and environmental campaigns (such as curb side recycling) share the
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2006.06.018

ing author. Department of Sociology, Columbia University, New York, NY 10027, USA.

ess: dc288@cornell.edu (D. Centola).

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2006.06.018
mailto:dc288@cornell.edu


ARTICLE IN PRESS
D. Centola et al. / Physica A 374 (2007) 449–456450
important property that a bystander’s probability of joining increases with the level of local participation by
her neighbors [10]. One neighbor acting alone is rarely sufficient to trigger a cascade. These cascades often
display a second important property: they typically unfold in clustered networks. Empirical studies have
consistently found that recruitment to social movements is most effective in locally dense networks
characterized by strong interpersonal ties [11,12]. Short cycles expose potential recruits to multiple and
overlapping influences that provide the strong social support required to motivate costly investments of time,
effort, and resources.

In this paper, we use a threshold model to analyze the effect of bridge ties on the dynamics of complex
propagation in complex networks [10,13,14]. Our results show that—contrary to the results for cascades with
simple propagation [1,6,7]—for complex propagation, random links to distant nodes can reduce the initial
growth of the contagions compared to a regular lattice. Moreover, too many random links can prevent
cascades from occurring altogether. We also examine the effects of random links on complex propagation in
an empirical social network with scale-free degree distribution.
2. The threshold model

The system is composed of a set of N agents located at the nodes of a network. Each agent can be in one of
two states: 1 indicates that the agent is active, otherwise its state is 0. Each agent is assigned a fixed threshold
0pTp1 which determines the proportion of neighbors required to activate it. The dynamics are defined as
follows. Each time t a node i is selected at random.
(1)
 If its state is 1 (active), then it will remain active;

(2)
 if its state is 0, then it becomes active, changing its state to 1, if and only if the fraction of its neighbors in

the active state is equal to or larger than T.
In order to isolate the effects of network topology from the effects of the threshold distribution, we assign
every node an identical threshold T, which determines the fraction of neighbors required to activate it. By
definition, a single active seed is insufficient to initiate complex propagation. Hence, we seed the network by
randomly selecting a focal node and activating this node and all of its neighbors. Once the contagion spreads
from the seed neighborhood through the network, the system eventually reaches a stationary configuration in
which any remaining inactive nodes remain inactive since they have insufficient numbers of active neighbors.
For a finite graph, the dynamics display a first-order phase transition at the critical threshold Tc. Below Tc,
the number of active node’s in the stationary configuration is of the order of the system, while for values of the
threshold above the critical value the number of active nodes is a very small fraction of the system.

Threshold models are similar to other contagion models, such as the SIS model, which use the fraction of
active neighbors to determine a node’s probability of becoming active. In the SIS model, the more the active
neighbors a node has, the more likely it is to become infected. The main difference between the SIS model and
the threshold model is that in the latter, the probability of a node becoming active is zero below the threshold
and one above it. A detailed analysis of this difference can be found in Ref. [14].
3. Critical thresholds in regular and random graphs

The following analysis calculates the value of the critical threshold for different network architectures. First,
we compare critical thresholds in random networks and in a one-dimensional regular network with identical
size and average degree hki.

For a random graph of size N in which all the nodes have the same degree hki5N and the same threshold T,
as N approaches infinity the probability that two nodes in the initial seed neighborhood will have a common
neighbor approaches zero. Thus, the critical threshold for a random graph is approximated by

Tr
c ¼

1

hki
, (1)
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which corresponds to the limiting case of simple propagation, showing that complex propagation cannot
succeed on sparse random graphs [15].

The critical threshold for a regular one-dimensional lattice is [9]

T1d
c ¼

1
2
. (2)

While in a one-dimensional ring with average degree hki the critical threshold is independent of the interaction
length (Eq. (2)), in a random graph with the same average degree hki the critical threshold decreases with hki
(Eq. (1)). Thus, the difference between the critical thresholds of regular one-dimensional lattices and random
networks increases with the average degree hki, making the one-dimensional lattice much more vulnerable to
complex propagation than an equivalent random network.

This feature is also observed in two-dimensional lattices. In a two-dimensional lattice with near and next-
nearest neighbors (also called a Moore neighborhood) the critical threshold is [9]

T2dnn
c ¼ 3

8
¼ 0:375. (3)

As the interaction length in the two-dimensional lattice increases, the critical threshold approaches the
upper limit of 1

2
[9]. Thus, increasing hki increases the differences in the critical thresholds between regular and

random networks, making clustered regular networks able to support comparatively greater amounts of
complex propagation than random networks.

4. Small-world networks

We next explore the transition in critical thresholds that occurs in the small-world regime between perfect
regularity and pure randomness. Using a two-dimensional regular lattice with nearest and next-nearest
neighbors, we study the effects of tie perturbation on the ability of networks to support complex propagation.
We simulate cascade dynamics, and record whether cascades succeed and how long the successful cascades
take to complete. A cascade is deemed successful if it reaches at least 90% of network nodes. As in the previous
section, we seed the network by randomly selecting a focal node and activating this node and all of its
neighbors.

For robustness, we use two different perturbation algorithms to study the effects of bridge ties on complex
propagation. One is the usual rewiring technique [1]: each link is broken with probability p and reconnected to
a randomly selected node. The second algorithm rewires links in such a way that nodes keep their degrees (and
thus the original degree distribution is conserved) by permuting links [17]: with probability p, a link connecting
nodes i and j is permuted with a link connecting nodes k and l. For both cases, we observed the likelihood of
successful cascades as p increases from 0 to 1, repeating the experiment for different threshold values.

For T4T2dnn
c ¼ 3=8 (the critical threshold for p ¼ 0), cascades are precluded for all p. Permuting links

such that all nodes have the same degree k ¼ 8, if To 1
8
(the critical value for p ¼ 1), cascades are guaranteed

for all p. Thus, for complex propagation, randomization is only meaningful within the window 1
8
pTp 3

8
.

Fig. 1 reports the phase diagram for cascade frequency for thresholds in this range, as the lattice
neighborhoods (hki ¼ 8) are randomized with probability 0:001ppp1. Despite small differences between the
two algorithms used for the perturbation of the network, the phase diagram shows that cascades are bounded
above by Tc ¼

3
8
and below by Tc ¼

1
8
. As thresholds are increased, the critical value of p decreases, making

cascades less likely in the small-world network region.
Fig. 2 shows the effects of perturbation on two neighborhoods with focal nodes i and j. i’s neighborhood is a

seed neighborhood (shaded) and j’s neighborhood (outlined) is inactive. In Fig. 2a, the nodes k, k0, and k00 are
shared by neighborhoods i and j. By acting as bridges between the two neighborhoods, these nodes allow
complex propagation to flow from i to j. As shown in Fig. 2b, random rewiring reduces the overlap between
the neighborhoods by reducing the common neighbors shared by i and j. In the resulting network, i’s
neighborhood can only activate j through k; thus, if j requires multiple sources of activation, i’s neighborhood
will no longer be sufficient to activate j.

While the clustering coefficient [1] shows how network structure decreases with network rewiring, we have
not found a direct relationship between clustering and the transition reported previously (Fig. 1), where the
sensitivity of complex propagation to network structure increases with increasing values of T. In order to
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Fig. 1. Cascade window for small-world networks. Results are averaged over 1000 realizations in 10,000 node networks. The shaded area

indicates when cascades occur for small-world networks obtained after rewiring (red diamonds) or permuting (black circles) links.

Fig. 2. Overlap between neighborhoods in (left) a regular lattice and (right) after rewiring. Rewiring decreases the overlap between i and j

making cascade propagation more difficult.
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estimate the effect of rewiring on complex propagation, we have calculated the number of vulnerable nodes in a
finite network extending the definition introduced in Ref. [6]. We consider a node j vulnerable if there exists an
initial active seed (i.e., a single focal node and its active neighbors) that does not contain node j, and yet
is able to directly activate it in one step. Thus, if the set of vulnerable nodes is large enough, we expect that
activation will propagate in the system; if the cluster of vulnerable nodes is small, the activation will stay
localized and will not spread to the entire network. In Fig. 3 we display the regions of the phase diagram in
which the number of vulnerable nodes corresponds to 90% of the population. A direct comparison with Fig. 1
shows a good agreement with the critical values for small-world networks, especially for the permuting
algorithm [16].

When links are randomly rewired, local changes to neighborhood structure dramatically affect the dynamics
of propagation. Fig. 4 shows the growth of the average number of active nodes in regular and rewired
networks for a threshold T ¼ 0:24 (using the permutation algorithm). In a regular lattice the growth of active
nodes follows a power law with an exponent close to 2, due to the two-dimensional topology of the network.
Perturbing the network reduces the number of paths that can support complex propagation, as illustrated in
Fig. 4, where the cascade in the small-world network initially grows more slowly than in the regular network.
However, if ToTc, toward the end of the cascade process, the number of active nodes in the small-world
network rapidly expands, ultimately activating the entire network faster than in the regular network. The inset
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Fig. 3. The lines indicate the border in which the number of vulnerable nodes is 90% of the population, for small-world networks obtained

after rewiring (red diamonds) or permuting (black circles) links. Results are averaged over 1000 realizations in a 10,000 node network.
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Fig. 4. Average number of active nodes for (circles) the regular lattice and (diamonds) for a small-world network (following the

permutation algorithm with p ¼ 0:1). For reference the solid line follows a power law growth �t2. Average over 100 realizations, T ¼ 0:24
and networks containing N ¼ 104 (open symbols) and 4� 104 (filled symbols) nodes. Inset: average number of active nodes for (triangles)

simple (T ¼ 0:12) and (diamonds) complex propagation.
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in Fig. 4, which compares simple propagation with complex propagation on small-world networks, shows the
dramatic slow down for cascade growth when thresholds are increased.

In Fig. 5 we have plotted the average time of the cascades for different values of the threshold T, the
rewiring parameter p, and network sizes N. For simple propagation (T ¼ 0:12), random perturbation of links
reduces the average time. This decrease in average time is more evident as the system size is increased. For the
regular lattice, the average time increases with system size as Na (for T ¼ 0:24 the exponent a ’ 0:5) as
expected from the growth of the number of active nodes. For complex propagation, random links initially
reduce the average time. However, further perturbing the network reduces its critical threshold. As p

approaches the critical value, the average time to complete a cascade begins to increase. For slightly larger
values of p, cascades are entirely precluded.
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Fig. 5. Time to activate all the nodes (open symbols N ¼ 10; 000; filled symbols N ¼ 40; 000) for an initial seed for T ¼ 0:12, 0:24, and
0:36 (from top to bottom). Time has been averaged over 100 realizations. The randomized networks have been obtained using the

permutation algorithm.
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Fig. 6. Effect of network perturbation on complex propagation in the IMDB network (circles) and after randomization (triangles). The

randomized network is obtained by permuting links, keeping the original degree distribution unchanged [17].
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5. Empirical scale-free networks

Regular lattices are an important theoretical demonstration of complex propagation because they can have
very wide bridges between near-neighbors. Nevertheless, except for special cases where spatial patterns of
interaction dominate the structure of the network of interaction [18], regular lattices are not typical of social
networks. We therefore extended our analysis to an empirical social network, the internet movie data base
(IMDB). The nodes of the network are movie actors and the links indicate that the actors have played together
in at least one film. Fig. 6 reports the average relative size of cascades, hsi, in the IMDB. It is worth noting that
due to the nature of the transition for cascade behavior, the average frequency of cascades is equivalent to the



ARTICLE IN PRESS
D. Centola et al. / Physica A 374 (2007) 449–456 455
average relative size of cascades, hsi. The black line shows hsi for the original network (p ¼ 0), where Tc ’ 0:1,
while the red line represents the randomized IMDB (p ¼ 1), where Tc ’ 0:04 (approximately 1=hki for an
estimated hki ¼ 25). Consistent with our results for regular lattices, the socially clustered IMDB network
supports complex propagation that cannot propagate on the randomized network.

While past comparisons between scale-free and random networks have shown that simple propagation is
facilitated by high degree ‘‘hubs’’ who can activate large numbers of neighbors [2], for complex contagions
hubs do not significantly help propagation dynamics. First, hubs are more difficult to activate since a larger
number of active neighbors are required to activate a high degree node. Second, once they are activated, hubs
still require the help of other nodes before they can activate any of their neighbors. So, even with skewed
degree distribution, local structure is still the primary factor determining the success of complex propagation.

6. Conclusions

Using a threshold model, we have analyzed simple and complex propagation in different classes of complex
networks. The relevant bridging mechanism for complex propagation is not the dyadic link but multiple short
paths between source and target. As a regular lattice is randomized, there are fewer common neighbors to
provide multiple simultaneous sources of activation. Thus, while random links can promote both simple and
complex propagation in small-world networks, they can also inhibit complex propagation as thresholds
approach the critical value. This implies that random links might not promote diffusion if the credibility of
information or the willingness to adopt an innovation depends on receiving independent confirmation from
multiple sources.

The qualitative differences between complex and simple propagation caution against extrapolating from the
spread of disease or information to the spread of participation in political, religious, or cultural movements.
These movements may not benefit from ‘‘the strength of weak ties’’ and may even be hampered by processes of
global integration, which typically involve weak-tie formation. More broadly, many of the important
empirical studies of the effects of small-world networks on the dynamics of cascades may need to take into
account the possibility that propagation may be complex. Our results demonstrate that certain topological
properties that have typically been thought to be advantageous for cascades can in fact reduce a network’s
ability to propagate collective behavior.
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